(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(X)) → f(g(f(g(f(X)))))
f(g(f(X))) → f(g(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(g(f(g(f(z0)))))
f(g(f(z0))) → f(g(z0))
Tuples:
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
F(g(f(z0))) → c1(F(g(z0)))
S tuples:
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
F(g(f(z0))) → c1(F(g(z0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c1
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
We considered the (Usable) Rules:
f(g(f(z0))) → f(g(z0))
And the Tuples:
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
F(g(f(z0))) → c1(F(g(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(F(x1)) = [4]x1
POL(c(x1, x2, x3)) = x1 + x2 + x3
POL(c1(x1)) = x1
POL(f(x1)) = [2] + [4]x1
POL(g(x1)) = 0
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(g(f(g(f(z0)))))
f(g(f(z0))) → f(g(z0))
Tuples:
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
F(g(f(z0))) → c1(F(g(z0)))
S tuples:
F(g(f(z0))) → c1(F(g(z0)))
K tuples:
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c1
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
f(
z0)) →
c(
F(
g(
f(
g(
f(
z0))))),
F(
g(
f(
z0))),
F(
z0)) by
F(f(z0)) → c(F(g(f(g(z0)))), F(g(f(z0))), F(z0))
F(f(x0)) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(g(f(g(f(z0)))))
f(g(f(z0))) → f(g(z0))
Tuples:
F(g(f(z0))) → c1(F(g(z0)))
F(f(z0)) → c(F(g(f(g(z0)))), F(g(f(z0))), F(z0))
F(f(x0)) → c
S tuples:
F(g(f(z0))) → c1(F(g(z0)))
K tuples:
F(f(z0)) → c(F(g(f(g(f(z0))))), F(g(f(z0))), F(z0))
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c, c
(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(f(x0)) → c
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(g(f(g(f(z0)))))
f(g(f(z0))) → f(g(z0))
Tuples:
F(g(f(z0))) → c1(F(g(z0)))
F(f(z0)) → c(F(g(f(g(z0)))), F(g(f(z0))), F(z0))
S tuples:
F(g(f(z0))) → c1(F(g(z0)))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c1, c
(9) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
F(
g(
f(
z0))) →
c1(
F(
g(
z0))) by
F(g(f(f(y0)))) → c1(F(g(f(y0))))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(g(f(g(f(z0)))))
f(g(f(z0))) → f(g(z0))
Tuples:
F(f(z0)) → c(F(g(f(g(z0)))), F(g(f(z0))), F(z0))
F(g(f(f(y0)))) → c1(F(g(f(y0))))
S tuples:
F(g(f(f(y0)))) → c1(F(g(f(y0))))
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c, c1
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
F(g(f(f(y0)))) → c1(F(g(f(y0))))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
f(f(z0)) → f(g(f(g(f(z0)))))
f(g(f(z0))) → f(g(z0))
Tuples:
F(f(z0)) → c(F(g(f(g(z0)))), F(g(f(z0))), F(z0))
S tuples:none
K tuples:none
Defined Rule Symbols:
f
Defined Pair Symbols:
F
Compound Symbols:
c
(13) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(14) BOUNDS(O(1), O(1))